
Chemical Engineering Journal 79 (2000) 13–21

Analysis of controlled CSTR models with fluctuating
parameters and uncertain parameters

M. Ratto∗, O. Paladino
Università di Genova, Dipartimento di Ingegneria, Ambientale, Via Opera Pia 15, 16145 Genova, Italy

Received 26 February 1999; received in revised form 8 January 2000; accepted 21 January 2000

Abstract

In this paper, a detailed stability analysis of PI controlled CSTRs has been studied, accounting for both fluctuating parameters (i.e.
noise) and uncertain parameters to be present in the model. Noise has been considered in the inlet temperature and in the temperature
measurement made by the controller, while uncertainty has been taken into account for kinetic parameters, imperfect mixing and bias in
the temperature measurement made by the controller. As far as uncertain parameters are concerned, a recently presented methodology to
detect the most probable stability regions in the control gains plane has been applied. Such results are combined with the noise analysis
(implemented by applying the Fokker–Planck theory of stochastic differential equations), to obtain global criteria for the choice of control
gains which guarantee both the stability of the steady state with a given confidence and low fluctuations in the reactor induced by noise in
the inlet temperature and in the temperature measurement made by the controller. Furthermore, attention has been given to how to obtain
results minimising the computational effort. In this way, it will be shown that the presented techniques, which allow a rigorous analysis of
reacting systems, accounting for both uncertain and fluctuating parameters, can be very efficient. © 2000 Elsevier Science S.A. All rights
reserved.
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1. Introduction

Physico-mathematical models are always characterised
by a certain degree of uncertainty: uncertainty is present
in physico-chemical parameters (due to errors in the ex-
perimental measurements and in the estimation procedure)
and in the models themselves (some secondary effects are
neglected, some constitutive equations are used instead of
others, etc.). Furthermore, fluctuations are always present
in real systems and can be seen as another kind of uncer-
tainty in models, which can be represented by introducing
time-dependent stochastic variables in them.

In the applied disciplines, physico-mathematical models
are used for the description, interpretation and design of real
systems. The effectiveness of models to give realistic pre-
dictions is a fundamental requirement, also considering that
safety, economical and environmental constraints become
more and more binding in the design and operation of pro-
cess engineering systems. Model effectiveness is, therefore,
strictly correlated to model uncertainty, and methodologies
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designed to obtain safe predictions in terms of confidence
values are often applied.

The problem of uncertainty can be critical when the
analysed models are highly non-linear [1]. Instability
behaviour is often detected in non-linear systems: con-
trolled CSTRs, as an example, can present a very complex
dynamic behaviour, ranging from periodic to chaotic oscil-
lations [2–5]. Obviously, in concrete reactor operation, such
complex dynamic behaviour must be avoided, increasing
the need for reliable model predictions.

Recently [6,7], the uncertainty analysis of PI controlled
CSTRs has been performed applying Monte Carlo methods:
such an approach allows the identification of safe control
gains, which assure the stability of the steady state with
a given confidence. In another recent work [8], the noise
analysis of PI controlled CSTRs has been presented, ap-
plying the Fokker–Planck theory of stochastic differential
equations, in order to study the effect of fluctuations dur-
ing reactor steady state operation. In the present study, a
synthesis is performed, in order to identify criteria for the
safe choice of control gains, accounting for both constant
imperfectly known parameters and fluctuating parameters.

To do so, the same methodologies of the previous works
have been applied, but more attention was given to minimis-
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ing the computational effort. This fact is important in view
of the application of these methodologies to more complex
cases and it will be shown how highly reliable results can be
obtained, without the analysis becoming time-consuming.

The analysis presented in this paper consists, therefore,
of the following two steps:
• to obtain the most probable stability region in the control

gains plane, the first Hopf bifurcation locus has been stud-
ied by considering uncertainty in the reaction kinetics, in

Da(ϑ, ϕ) = k0τ exp

{ −nE

R[nTref + 1Ta(n − 1)(ϑ0s − kp(ϑM − ϑs) − kIτϕ) + 1Taϑ ]

}
(4)

the non-perfect mixing and in the bias in the temperature
measurement made by the controller;

• to point out additional constraints so that control gains are
also robust against noise, fluctuations are considered in
the inlet temperature and in the temperature measurement
made by the controller.

2. Constant imperfectly known parameters: robust
stability analysis of non-ideal PI controlled CSTRs

In this section, the methodology proposed in previous
works [6,7] is briefly summarised and then results, relevant
for the aims of this paper, are presented. Assuming also that
model uncertainty can be represented through a set of pa-
rameters (such as the bypass coefficientn, in the non-ideal
Lo–Cholette CSTR model [9]), any mathematical model can
be seen, independently of the complexity of the computa-
tion (mainly a numerical simulation), as a function of the
following type:

y = f (x1, . . . , xn) (1)

wherey is the model output (e.g. a design parameter), whose
calculated value depends on thex1, . . . ,xn uncertain param-
eters. Since uncertain parameters are stochastic variables,
characterised by a given probability distribution, also the
predictiony has a statistical characterisation: the uncertainty
analysis aims to quantify the probability distribution of the
model outputy.

The most simple non-ideal PI controlled CSTR model has
been analysed: the Lo–Cholette model [9] where an exother-
mic liquid phase first order reactionA→B takes place. This
very simple model is described, in dimensionless form, by
the following system of ordinary differential equations [5]:

dξ

dt
= − n

m
ξ + (n − ξ)Da(ϑ, ϕ),

dϑ

dt
= n

m

(
1 + N

n
− N

)
[ϑ0s − kp(ϑM − ϑs) − k1τϕ]

+ n

m
Nϑe − n

m

(
1 + N

n

)
ϑ + (n − ξ)Da(ϑ, ϕ),

dϕ

dt
= ϑ − ϑs (2)

where

ξ = cA0 − cA

cA0
, ϑ = T − Tref

1Ta
, τ = vol

Q
,

t = t

τ
, ϕ =

∫ t

0
(ϑM − ϑs) dt̃ , ϑM = ϑ + b,

1Ta = −1HrcA0

ρcp
, N = UA

Qρcp
(3)

When the two non-ideality parametersn andm equal 1,
Eq. (2) degenerate into the ideal model. The operating con-
ditions of the present study are

k0τ = 4.807908× 108,
E

R
= 8000 K, N = 0.5,

Te = 373.16 K, T0s = 298.42 K, 1Ta = 200 K,

Tref = 430 K (5)

while the chosen steady state conditions for the correspond-
ing ideal model are

θs = 0, ξs = 0.8, ϕs = 0 (6)

The main goal of the design of this very simple system
is to assure the stability of the steady state. This means that
we have to analyse the Hopf bifurcation locus in the control
gains plane, where the steady state loses stability and limit
cycles arise [2,3].

Considering the uncertainty in the model (parametern),
in the kinetic parameters (k0,E) and in the bias in the tem-
perature measurement by the controller (parameterb), the
true values of the control gains at the bifurcation are un-
known. Maintaining the general form of uncertainty analysis
of Eq. (1), our problem can be synthesised in the calcula-
tion of the value of the proportional control gainkp at the
Hopf bifurcation (kp)H as a function of the four uncertain
parameters, the integral control gainkIτ being a constant
parameter, which can be arbitrarily set by the designer

(kp)H = f (n, k0,E, b)|kIτ (7)

Paladino and Ratto [6] proposed a technique, based on
Monte Carlo methods [10,11], for the analysis of this system,
considering the uncertainty forn, k0, E only. The Monte
Carlo analysis, whose details are presented in [7], consists
of the following steps:
1. Identification of the probability distributions of the

parameters (in this casen, k0, E, b);
2. Generation of a sample of the parameters;
3. Iterative evaluation of the functionf in Eq. (7) for each

element of the sample, in order to obtain a sample of
(kp)H;

4. From the obtained sample, the probability distribution
(kp)H can be evaluated and confidence values quantified.
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Furthermore, this procedure also allows the performance
of a global sensitivity analysis of the system, but this aspect
is beyond the objectives of the present paper. The critical
aspect for this kind of analysis is the number of iterations,
which has to be minimised in order to maintain the computa-
tional effort at acceptable levels. The ‘classical’ Monte Carlo
approach consists of doing a huge number of iterations (as
many as possible) and then get results. A typical example of
this is the computation of definite integrals, where the large
number of iterations is the ‘fee’ to pay for the application of
a very simple method of computation, which allows one to
get correct results without worrying about the shape of the
functions, discontinuities, etc. Nevertheless, when dealing
with uncertainty analysis of model outputs, the complexity
of the models often impedes the rough application of the
Monte Carlo approach. However, it is possible to minimise
the costs of the Monte Carlo analysis, by applying refined
sampling techniques, such as the Latin Hypercube sampling
[10], which allows the use of very small sample dimensions
without affecting the reliability of results. It can be shown
that, by applying the Latin Hypercube sampling technique
to sample parameters from their probability distributions, a
sample dimension equal to 200 is sufficient to obtain reli-
able values ofkp which guarantee reactor stability with a
confidence of 99% [7]. With such a sample dimension the
computational effort would be acceptable also in the case of
much more complex models.

So, in the present work the Latin Hypercube sampling
technique with sample dimension 200 has been applied and
the computation of Eq. (7) for different constant values of
kIτ (1, 10, 100, 1000) has been iterated. The four parame-
tersk0, E, n andb have been sampled from the probability
distributions shown in Table 1.

In Fig. 1, results are synthesised: owing to uncertainty,
stability and instability regions are no longer separated by a
line, but by a ‘band’ (the uncertainty region). The width of
the uncertainty region can be obtained by plotting the up-

Table 1
Probability distributions of the uncertain parameters

Kinetic parameters
Bivariate normal distribution with

Average estimates k0*=142361 s−1

(E/R)*=8005.8 K
S.D. σ (k0)∼=49500≡35%

σ (E/R)∼=141≡2%
Correlation χ∼=0.96

Bypass coefficient
Asymmetrical normal distribution with

Maximum n=1 (ideal model)
S.D. σ (n)=0.02
Constraints n<1, n>0.92

Bias
Normal distribution with

Mean 0◦C
S.D. 10◦C

Fig. 1. Uncertainty region for the Hopf locus obtained with the Monte
Carlo methodology.

per and lower limits of the probability distribution of (kp)H.
This is shown in Fig. 1, where the limits of the uncertainty
bands have been obtained by plotting the (kp)H values cor-
responding to the 99% (upper limit) and 1% (lower limit)
of confidence. In Fig. 1, the uncertainty region calculated
for the present work is also compared with the uncertainty
region calculated by neglecting bias. Obviously, the uncer-
tainty region accounting for bias is wider, owing to the fact
that a larger number of uncertain parameters was consid-
ered. Since the stability region of the steady state is above
the Hopf locus, for sufficiently high values ofkp the steady
state will be stable. Hence, in Fig. 1, the upper limit of the
uncertainty region is represented by the minimumkp values
assuring reactor stability with a confidence of 99%. Such
values are shown in Table 2, together with the bifurcation
values of the ideal modelkid

p calculated for the mean values
of the uncertain parameters and with the values computed
by neglecting bias.

So, with the presented approach, it is possible to quantify,
in a statistically rigorous way, uncertainty of model expec-
tations, also in the presence of non-linear dynamics. Fur-
thermore, the application of the Latin Hypercube sampling
reduces the computational effort to the minimum, allowing
its application also for complex models. A stability criterion
can be identified for the choice of control gains in terms
of confidencevalues. For any givenkIτ , the robust stability
criterion is

kp|kIτ > k99
p (8)

Table 2
Confidence values of (kp)H

kIτ kid
p k99

p (bias included) k99
p (bias neglected)

1 1.12 2.62 1.79
10 2.56 4.06 3.17

100 4.487 7.3 7.25
1000 5.29 11.9 11.8
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3. Fluctuating parameters: noise analysis of ideal PI
controlled CSTRs

Other kinds of uncertainties are present in models: param-
eters which fluctuate continuously with time (i.e. noise). So,
after identifying control gains assuring reactor stability also
in the presence of model and parameter uncertainty, the ef-
fectiveness of the control system in reducing fluctuations in
the reactor has to be verified. In the noise analysis, the goal
is to quantify the amplitude of the fluctuation of the output,
given the fluctuations of the input parameters. Recently, a
noise analysis (both theoretical and numerical) has been per-
formed [8] for PI controlled ideal CSTRs, where the reactor
temperature was the output and the noise in the temperature
measurement made by the controller was the input. If the
noise in the inlet temperature is also considered, the follow-
ing relationship between inputs and output has to be studied

ϑ = f (ϑ0, ϑM) (9)

The fluctuations in the inlet temperatureε0(t) and in the tem-
perature measurementεM(t) are assumed additive coloured
noises, with time averages given by

〈εj (t)〉 = 0, 〈εj (t)εj (s)〉 = Dαj exp(−αj |t − s|),
j = 0, M (10)

where the latter expression defines the exponential
correlation of the coloured noise, the dimensionless
auto-correlation time (normalised with respect toτ ) is
tc=α−1 and the variance is

〈(εj (t) − εj )(εj (t) − εj )〉 = 〈εj (t)εj (t)〉 = σ 2
j = Djαj ,

j = 0, M (11)

The model under consideration for the noise analysis is,
therefore, (n=1 andm=1)

dξ

dt
= −ξ + Da(ϑ)(1 − ξ),

dϑ

dt
= ϑ0s − kp(ϑ − ϑs) − k1τϕ + Nϑe − (1 + N)ϑ

+Da(ϑ)(1 − ξ) − kpεM(t) + ε0(t),

dϕ

dt
= ϑ − ϑs + εM(t) (12)

with the additional differential equations describing the time
evolution of the coloured noises

dεj

dt
= −αεj − αj

√
Dj0(t), j = 0, M (13)

The function0(t) is the Langevin force, with time averages

〈0(t)〉 = 0, 〈0(t)0(s)〉 = 2δ(t − s) (14)

whereδ(t) is the Dirac function. The Langevin force is a
gaussian white noise and is the limit of a coloured noise for
α (and σ ) tending to infinity (and fortc tending to 0). A

Fig. 2. Noise in the inlet temperature. AR0 vs. α0 varying kIτ (kp=6):
kIτ=0.1, 1, 10, 102, 103, 104, 105, 106.

white noise will never occur in practice and is an ideal limit,
but can be a very useful conservative approximation since,
for gaussian white noises, we could simply define

εj (t) = √
Dj0(t), j = 0, M (15)

in the system (12), without the necessity of the additional
differential Eq. (13).

Applying the Fokker–Planck theory to the linearisation
of the system of stochastic differential Eqs. (12)–(13) at the
steady state, it has been shown that quick and correct results
can be obtained, both for coloured and white noises [8].
Typical plots of the amplitude ratio AR versusα are shown
in Figs. 2 and 3, in the case of noise in the inlet temperature.
Similar figures have been obtained in previous work [8] for
noise in the temperature measurement.

Given any pair of control gains, the AR-curve has a max-
imum (the stochastic resonance). In the case of noise in the
inlet temperature, by increasingkIτ , α0 at stochastic res-
onance (αres

0 ) increases, but ARres
0 decreases, while in the

case of noise in the temperature measurement, bothαres
M and

ARres
M increase [8]. On the other hand, at constantkIτ , by

Fig. 3. Noise in the inlet temperature. AR0 vs. α0 varying kp (kIτ=103):
kp=6, 10, 20, 40, 80, 160.
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increasingkp for both types of fluctuations,αres
0 andαres

M re-
main (almost) unchanged, while ARres

0 and ARres
M decrease

[8]. So, it comes out that, for constantkIτ values, the higher
kp, the lower the amplitude ratio becomes at resonance, im-
plying that, in analogy with the stability analysis, a minimum
constraint forkp can be identified for the noise analysis.

4. Combined analysis of imperfectly known parameters
and fluctuating parameters

Once the uncertainty analysis and the noise analysis have
been carried out, the synthesis has to be performed, in order
to obtain criteria, coupling both classes of uncertainty: con-
stant imperfectly known physico-chemical parameters and
fluctuating parameters. A robustness criterion can be defined
for this purpose: assuming a reference safety value for the
reactor temperature standard deviationσ safe, the kp confi-
dence value is robust if, given the standard deviationsσM
andσ 0 for the noise in the measure and in the inlet, respec-
tively, the following condition holds:

kp > k99
p ⇒ AR < ARsafe (16)

In order to assess robustness, the curves of the amplitude
ratio at resonance ARres versuskp, for constantkIτ , have
been studied (see Figs. 4 and 5 for the case of noise in the
temperature measurement).

In Fig. 4,αM-values at resonance(αres
M ) for the different

kIτ are determined, whenkp = k99
p , while in Fig. 5, the

curves of the amplitude ratio at resonance ARres
M versuskp

are plotted. These curves are monotone decreasing and it
is evident that the constraintkp > k99

p defines a maximum

limit for the amplitude ratio at resonance, called ARMAX .
This means that, for eachkIτ and for each type of noise, if
we selectkp > k99

p , we will be sure that ARj < ARMAX
j ,

j=0, M. As a consequence of this, it is clear that, the lower
ARMAX

j is, the more robustkp confidence values are.

Fig. 4. ARM vs. αM for the confidence values ofkp. (—) klτ=1,
k99

p =2.62; (− − −) kIτ=10,k99
p =4.06; (· · · ·) kIτ=100,k99

p =7.3; (−·−·−)

kIτ=1000,k99
p =11.9.

Fig. 5. ARM at resonance vs.kp and determination of ARMAX
M . (—)

kIτ=1, αres
M =2.5; (− − −) kIτ=10, αres

M =4.0; (· · · ·) kIτ=100,αres
M =7.9;

(−·−·−) kIτ=1000,αres
M =25.1.

The approach presented in Fig. 5 is conceptually quite
simple. Nevertheless, to consider coloured noise (i.e. a
realistic description of fluctuations) implies additional dif-
ferential equations to be introduced in the model, with
subsequent complications during computations. Moreover,
similarly to the Hopf bifurcation locus, the values of
ARMAX

j may be affected by uncertainty and a Monte Carlo
analysis would be also required in this case. Nevertheless,
since the identification of techniques characterised by the
lowest computational effort ranked among the goals of
the present paper, in the following a simplified approach
to verify the robustness of the control gains is presented.
As far as the stochastic model is concerned, the simplified
approach is based on the white noise approximation: it al-
lows easier calculations and is conservative (i.e. safe), so
matching requirements for a rapid and reliable analysis. As
far as the effects of uncertainties on the stochastic model
are concerned, the following argumentations are taken into
account:
1. Fluctuations in the inlet temperature and in the temper-

ature measurement by the controller are additive noises;
therefore they do not affect the stability of the system, the
Hopf locus is not altered by fluctuations and the stability
analysis here presented is consistent also in the presence
of noise.

2. The effect of noise consists in letting the reactor temper-
ature fluctuate under the stable steady state conditions:
hence the noise analysis has do be intended in series and
not in parallel to the stability analysis.

3. Since such fluctuations are highly amplified in the neigh-
bourhood of the Hopf bifurcations [8], the noise analy-
sis should give the designer useful information on how
distant from the Hopf locus should the control gains be
chosen, to guarantee good performance also in the pres-
ence of noise: this means that the objective of the present
study should be to determine the distance1kp from
the Hopf locus to be added to thek99

p confidence value
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assuring stability; robustness ofk99
p can be stated if1kp

is very small with respect tok99
p .

4. The distance1kp is only slightly affected by uncertainty,
allowing the ignoring of the uncertainty analysis for the
stochastic model.

5. Combined analysis: simplified approach

The simplified approach is based on the white noise ap-
proximation. A coloured noise is characterised by a variance
σ 2 and by a time-correlationα−1. If the corresponding white
noise is analysed, having the same intensityD, but α→∞,
the approximation of AR can be defined as

(ARapp)2 =
(

Vθ

D

)
white

α−1 (17)

whereVθ is the variance of the reactor temperature fluctua-
tions induced by the white noise. In Figs. 2 and 3, straight
dotted lines are the plots of ARapp, compared to the true am-
plitude ratio of the coloured noise. The simplified approach
is exact ifα>αres, otherwise, it is a conservative approxima-
tion. Exactly the same behaviour is observed for the noise
in the temperature measurement. So, for each pair of control
gains(kp, kIτ ), it is sufficient to calculate one single value
of (Vθ /D) with the Fokker–Planck theory, and then obtain
ARapp by simply applying the algebraic Eq. (17) for any de-
sired value ofα. So, it is evident that the use of the white
noise approximation represents a major simplification and
it is sufficient to calculate, e.g. the curves (Vθ /D) versuskp
for different values ofkIτ to obtain a complete portrait of
the reactor behaviour in the control gains plane.

5.1. Noise in the temperature measurement

Comparison of the curves (ARM−kp) and (ARapp
M − kp)

is shown in Fig. 6 forαM=10 and 1000. As expected, the

Fig. 6. Comparison between the approximated approach(ARapp
M ) and

the complete study of coloured noise in the temperature measurement
(αM=10 and 1000).

ARapp
M curves forαM=10 are significantly higher than the

true ones, while forαM=1000, the approximated approach
is almost indistinguishable from the complete one.

So, when αM is sufficiently large, the approximated
Eq. (17) is exhaustive and allows a correct evaluation of
ARM, while for low values ofαM the approximation seems
to be too conservative. However, remembering the following
facts [8]:
1. It is a general result that, for a coloured noise,

lim
kp→+∞

ARM = 1, ∀kIτ, αM; (18)

2. In the worst cases, ARM versuskp curves are monotone
decreasing functions from+∞ to the horizontal asymp-
tote ARM=1, or, in other words, in the worst cases, it is
not possible to reduce ARM to values smaller than 1, but,
for kp sufficiently high, ARM can be reduced at most to 1;

3. Signals measured by control devices are mainly filtered
and therefore the amplitude of the noise in the measure-
ment is usually small: this implies that the only thing to
do, in most cases, is to avoid the noise in the measure-
ment being too amplified;

4. SinceαM is the ratio between the residence time in the
CSTR τ and the auto-correlation timetc, values ofαM
smaller than 10 are unlikely and, therefore, the case of
αM=10 is the worst possible situation for the approxi-
mated approach;

to obtain useful results, it is sufficient to do a very simple
correction to the ARapp

M values of Fig. 6 forαM=10. Such a
correction simply consists of interrupting the ARapp

M versus
kp curves at their minimum and replacing the increasing
branch of curve in Fig. 6 with a horizontal line (see Fig. 7).

With the slight modification of Fig. 7, the approximated
approach can be used to find additional constraints for the
choice of control gains. Remembering items 1 through 4
above in this paragraph, the most natural constraint is to
guarantee ARM<1 or, in the worst case of item 2, to guaran-
tee ARM∼=1 (i.e. ARM slightly larger that 1). In particular,

Fig. 7. Correction of(ARapp
M ) for noise in the temperature measurement

(αM =10).
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Table 3
Minimum values forkp, 1kp and k99

p +1kp — noise in the temperature
measurement

αM=10 αM=1000

kIτ kmin
p 1kp k99

p +1kp kmin
p 1kp k99

p +1kp

1 3.1 1.98 4.6 1.13 0.01 2.63
10 6.4 3.84 7.9 2.58 0.02 4.08

100 14.8 10.3 17.6 4.6 0.11 7.41
1000 37 31.7 43.6 6.3 1 12.91

• whenαM=1000 (and in every other case, when the ARapp
M

curves intercept the horizontal line ARM=1), it is possi-
ble to guarantee ARM<1 by simply choosing akp larger
than the value at the interception with ARM=1 (kmin

p , see
Table 3);

• whenαM=10 (and in every other similar case), one can
choose akp larger than the value at the minimum of the
ARapp

M curve (i.e. at the beginning of the straight line in
Fig. 7): in this way, in the most conservative possibil-
ity, it is assured that ARM will remain smaller than the
minimum of the ARapp

M curve, but, if we observe Fig. 7,
such a minimum constraint forkp implies that, in prac-
tice, the true ARM curve has reached the acceptable val-
ues ARM∼=1 (kmin

p values are shown in Table 3).

So, given the actual operating conditions, thekmin
p val-

ues can be easily calculated, and subsequently1kp can be
directly obtained

1kp = kmin
p − (kp)H (19)

where the Hopf bifurcation value (kp)H is represented, in
Figs. 6 and 7, by the value at the vertical asymptote. As
already discussed, if uncertainty is accounted, the value of
(kp)H is affected, as well askmin

p but it has been verified that
1kp is insensitive to uncertainty. This can be explained by
the fact that the noise analysis is a linear analysis, and is
not influenced by the non-linearity of the system. So,1kp

can be easily computed by applying (kp)H andkmin
p values

of the ideal model without uncertainty (i.e.(kp)H = kid
p ).

Furthermore, it is important to remember that such a value
1kP has to be added to the confidence valuek99

p . Since such a
confidence value is already an approximation in excess of the
Hopf bifurcation value in the 99% of cases, the robustness
criterion

ksafe
p = k99

p + 1kp (20)

seems to be reasonably safe, without the necessity to
introduce the uncertainty analysis for1kp, too.

5.2. Noise in the inlet temperature

Comparison of the curves (AR0−kp) and (ARamp
0 − kp)

is shown in Fig. 8 forα0=10 and 1000. As before, in the
caseα0=10, the approximated approach predicts AR0 values

Fig. 8. Comparison between the approximated approach(ARapp
M ) and the

complete study of coloured noise in the inlet temperature (α0=10 and
1000).

larger than in the true case, but, since for a coloured noise
in the inlet temperature

lim
kp→+∞

AR0 = 0, ∀kIτ, α0, (21)

this does not represent a problem, since the approximated
curves remain effective in predicting the minimum values
of 1kp assuring AR0<1. In the caseα0=1000, the approx-
imated approach cannot be distinguished from the complete
approach.

So, in the case of noise in the inlet, it is very easy to
identify (for eachkIτ ) the values ofkmin

p and 1kp. Such
values are shown in Table 4. With the same motivations as
before, the uncertainty analysis for1kp can be ignored in
this case, too.

5.3. Global constraint for control gains (combined
analysis)

In Figs. 9 and 10, confidence values obtained with the
uncertainty analysis of the Hopf locus (Table 2) are plotted
together with theksafe

p values in Eq. (20) obtained with the
noise analysis (Tables 3 and 4), for noise in the temperature
measurement and in the inlet temperature, respectively. In
the particular case studied in this paper, noise in the mea-

Table 4
Minimum values forkp, 1kp andk99

p +1kp — noise in the inlet temper-
ature

α0=10 α0=1000

kIτ kmin
p 1kp k99

p +1kp kmin
p 1kp k99

p +1kp

1 1.4 0.28 2.9 1.125 0.005 2.63
10 2.7 0.14 4.2 2.563 0.003 4.06

100 4.59 0.1 7.4 4.488 0.001 7.3
1000 5.39 0.1 12 5.292 0.002 1.19
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Fig. 9. Constraints forkp resulting from the uncertainty analysis of the
Hopf locus and the noise analysis for the temperature measurement by
the controller (αM=10 and 1000).

surement brings the most restrictive values forkp, above
all for αM=10, while for noise in the inlet the confidence
valuesk99

p are slightly affected and it can be stated that they
are sufficient to guarantee AR0<1 without any adjustment.
This means that in this last casek99

p is robust, but in the
other cases robustness cannot be assured, so implying that
safe criteria for the choice of control gains must consider
all classes of uncertainty.

When all types of uncertainty are accounted for, the su-
perposition the different kinds of noise has also to be con-
sidered: since the considered noises are additive and being
the noise analysis linear, there is no interaction. This means
that the variance of the reactor temperature will be the sum
of the variances induced by the two noises singularly, while
the amplitude ratios AR0 and ARM are not altered. Hence
the values of1kp for the singular noises are not altered and,
combining the noises, the maximum1kp has to be selected.
So, for eachkIτ , the global constraint for the proportional

Fig. 10. Constraints forkp resulting from the uncertainty analysis of the
Hopf locus and the noise analysis for the inlet temperature (α0=10 and
1000).

control gain is

ksafe
p = k99

p + max
j=0,M

(1kp) (22)

In the present study, noise in the temperature measurement
mainly controls the global constraint: however exceptions
can occur, e.g. ifα0=10, αM=1000 andkIτ=1, 10. So, the
main effect has to be searched case by case.

6. Conclusions

In this work the stability of PI controlled CSTRs is stud-
ied, in the presence of uncertainties in the model. Two kinds
of uncertainty have been considered: imperfectly known
physico-chemical and process parameters and fluctuating
parameters (noise). In the first case, a technique based on
Monte Carlo methods has been applied [6,7], allowing the
obtaining of safe values for control gains, assuring reactor
stability with a given confidence. In the second case, the
Fokker–Planck theory of stochastic differential equations
has been adopted [8] to study fluctuations in the reactor
temperature induced by noise in the inlet temperature or in
the temperature measurement made by the controller. Sub-
sequently, a synthesis is performed of the two approaches,
to obtain global criteria for the choice of control gains.

In the presented analyses, considerable care has been
given to minimising the computational effort. A refined
sampling technique (Latin Hypercube sampling) has been
applied during the Monte Carlo analysis, allowing the ob-
taining of a correct evaluation of the cumulative distribution
of the model output even with very small sample dimen-
sions (e.g. with a sample of 200 elements). Furthermore, a
simplified approach has been presented for the noise anal-
ysis with the Fokker–Planck theory, based on the white
noise approximation: results obtained with the simplified
approach are exact or at least conservative with respect to
the complete analysis, therefore they are in all cases safe.

Hence, with the presented approaches, techniques for a
rigorous analysis of reacting systems, accounting for both
uncertain and fluctuating parameters, are very efficient. This
result is important for the study of much more complex
models, characterised by complex reactions networks, dis-
tributed parameter systems, etc.

7. Nomenclature

A heat transfer area (m2)
AR amplitude ratio
b bias in the temperature measurement

by the controller
cA reactant concentration (kmol cm−3)
D noise intensity
Da(θ ) Damkoehler number
E activation energy (J kmol−1)
k0 Arrhenius pre-exponential factor (s−1)
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kI integral control gain (s−1)
kp proportional control gain
m dead volume rate in the Cholette model
n bypass coefficient in the Cholette model
N number of transport units
Q flow rate (m3 s−1)
t dimensionless time, normalised with

respect toτ
tc auto-correlation time
t time (s)
T temperature (K)
1Ta adiabatic temperature difference (K)
U overall heat transfer coefficient

(J s−1 m−2 K−1)
V variance of the noise
vol reactor volume (m3)

Greek letters

α t−1
c

ε fluctuating variable
θ dimensionless temperature
ϕ integral control state variable
ξ conversion
ρ density (kg m−3)
σ standard deviation of the noise
τ residence time (s)

Subscripts

0 inlet
e external
H Hopf bifurcation
M measured
s steady state

Superscripts
app approximated
id ideal model without uncertainty
min minimum value for noise analysis, obtained

with the ideal model without uncertainty
res stochastic resonance
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